Controlled conversion of an immortalized mesodermal progenitor cell towards osteogenic, chondrogenic, or adipogenic pathways
نویسندگان
چکیده
The teratocarcinoma-derived C1 clone behaves as a mesodermal tripotential progenitor cell whose choice of fate, either osteoblast, chondroblast, or adipoblast, is strictly dependent on the spatial organization of the cells and the nature of the induction. In the absence of cell contact before the addition of inducers, the C1 cells maintain a stable undifferentiated phenotype while expressing potential regulators of embryonic mesodermal stem cell fate such a M-twist and Id1. Upon establishment of cell contacts before the induction of differentiation, the early genes characteristic of the three fates become expressed. In the presence of beta glycerophosphate and ascorbate, provided the cells have formed aggregates, 95% of the C1 cells mineralize with a kinetics of gene expression close to that of osteoblasts (Poliard, A., D. Lamblin, P. J. Marie, M. H. Buc, and O. Kellerman. 1993. J. Cell Sci. 106:503-512). With 10(-6)M dexamethasone, 80% of the same aggregates differentiate into foci of chondroblast-like cells. The kinetics of expression of the genes encoding type II, IX, X, and XI collagens, aggrecan and link protein during the conversion toward cartilage hypertrophy resembles that accompanying in vivo chondrogenesis. The synergistic action of dexamethasone and insulin convert most confluent C1 cells into functional adipocytes and induce a pattern of gene expression close to that reported for adipoblast cell lines. The C1 clone with its capacity to differentiate along three alternative pathways with high frequency, therefore appears as a valid in vitro model for deciphering the molecular basis of mesoblast ontogeny.
منابع مشابه
Clonal mesenchymal progenitors from human bone marrow differentiate in vitro according to a hierarchical model.
Bone marrow stromal cells can give rise to several mesenchymal lineages. The existence of a common stem/progenitor cell, the mesenchymal stem cell, has been proposed, but which developmental stages follow this mesenchymal multipotent progenitor is not known. Based on experimental evidence, a model of mesenchymal stem cell differentiation has been proposed in which individual lineages branch dir...
متن کاملMechanically induced osteogenic differentiation--the role of RhoA, ROCKII and cytoskeletal dynamics.
Many biochemical factors regulating progenitor cell differentiation have been examined in detail; however, the role of the local mechanical environment on stem cell fate has only recently been investigated. In this study, we examined whether oscillatory fluid flow, an exogenous mechanical signal within bone, regulates osteogenic, adipogenic or chondrogenic differentiation of C3H10T1/2 murine me...
متن کاملCharacterization of single cell derived cultures of periosteal progenitor cells to ensure the cell quality for clinical application
For clinical applications of cells and tissue engineering products it is of importance to characterize the quality of the used cells in detail. Progenitor cells from the periosteum are already routinely applied in the clinics for the regeneration of the maxillary bone. Periosteal cells have, in addition to their potential to differentiate into bone, the ability to develop into cartilage and fat...
متن کاملMultilineage cells from human adipose tissue: implications for cell-based therapies.
Future cell-based therapies such as tissue engineering will benefit from a source of autologous pluripotent stem cells. For mesodermal tissue engineering, one such source of cells is the bone marrow stroma. The bone marrow compartment contains several cell populations, including mesenchymal stem cells (MSCs) that are capable of differentiating into adipogenic, osteogenic, chondrogenic, and myog...
متن کاملPlasma-Derived Fibronectin Stimulates Chondrogenic Differentiation of Human Subchondral Cortico-Spongious Progenitor Cells in Late-Stage Osteoarthritis
Migration and chondrogenesis of human subchondral cortico-spongious progenitor cells (SPCs) are the key steps in the repair of microfracture-induced articular cartilage defects. The aim of this study was to evaluate the effect of human plasma-derived fibronectin (Fn) on the chondrogenic differentiation of SPCs, which was isolated from subchondrol cortico-spongious bone of late-stage osteoarthri...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of Cell Biology
دوره 130 شماره
صفحات -
تاریخ انتشار 1995